Global Seafood Alliance Logo

- GOAL Events
- Advocate Magazine
- Aquademia Podcast
- <u>Blog</u>
- Contact
- 0
- X
- in
- Log In

- About
 - Who We Are
 - Our History
 - o Our Team
 - Sustainable Development Goals
 - Careers
- <u>Membership</u>
 - o <u>Overview</u>
 - Our Members
 - Corporate Membership
- Resources
- Certification
 - Best Aquaculture Practices
 - Best Seafood Practices

Search...

Q

Log In

- About
 - Who We Are
 - o Our History
 - o Our Team
 - Sustainable Development Goals
 - Careers
- Membership
 - o <u>Overview</u>
 - o Our Members
 - Corporate Membership
- Resources
- Certification
 - Best Aquaculture Practices
 - Best Seafood Practices
- GOAL Events

Innovation & Investment

- Advocate Magazine
- Aquademia Podcast
- **Blog**
- Contact

Texas producer giving RAS shrimp production a charge

Responsible Seafood Advocate logo

NaturalShrimp uses patented electrocoagulation process to control pathogens, contaminants

Texas-based company NaturalShrimp uses a light electrical charge, a process called electrocoagulation, to remove and control bacteria, ammonia and other contaminants that hinder shrimp production. Courtesy photo.

A recirculating aquaculture system (RAS) producer based in Dallas, Texas, USA,- says it has solved the problem of how to grow shrimp commercially in enclosed recirculating tanks.

The secret, according to NaturalShrimp Inc., is a proprietary process it developed that uses an electrical charge to remove and control bacteria, ammonia and other contaminants that hinder shrimp production.

This approach results in high yields and is a process that can be replicated anywhere, even in urban areas far from the sea, Bill Williams, NaturalShrimp chairman and CEO, told The Advocate.

"We're taking large tanks of seawater and we're cramming them full of shrimp," he said. "That's really the only way you can make money in this business."

Natural Shrimp and F&T Water Solutions LLC of Lago, Fla., obtained a patent in December 2018 on the process, called Vibrio Suppression Technology. The patent covers application to shrimp and other species, including fish. According to Williams, NaturalShrimp plans to use the technology to expand production in its own facilities and possibly elsewhere through partners or licensing.

The technique is based on electrocoagulation, a technology that puts a current through water. This controls contaminants by various means. For instance, the flowing electricity can sweep charged particles to the positive or negative electrode or it may cause the particles to settle out, thereby eliminating them. Alternatively, certain electrode materials can create chlorine gas from the salt in the water. This gas then reacts with contaminants, enabling easy removal.

NaturalShrimp leadership say facilities like theirs in San Antonio, Texas, can be located virtually anywhere. Courtesy photo.

The electric charge is at a low enough intensity that it doesn't appear to harm the shrimp. Indeed, there is some evidence, Williams said, that the shrimp prefer the electrified water, with it seeming to be a near ideal environment.

Electrocoagulation is increasingly used in wastewater treatment because it handles contaminants that are difficult to get rid of through filtration or chemical means. It's part of F&T's arsenal. For NaturalShrimp, which has been in research and development on growing shrimp in enclosed, recirculating tanks for about 15 years, the technology solved some pressing issues, according to Williams.

"You have two problems when you're growing shrimp or any fish species: bacteria and ammonia. And you've got to be able to control both of those," he said.

Of the two, ammonia control is the more difficult, Williams added. Ammonia arises from shrimp waste, uneaten feed and other organic sources. When the ammonia level in the water is too high, the resulting chain of chemical reactions can kill shrimp. If the ammonia level crosses a critical threshold, producers may only have a few days to get shrimp out or to change the water. Neither of these may be practical or possible. Thus, managing ammonia is a key to growing shrimp in an enclosed, recirculating tank.

Seeking an answer to this problem, NaturalShrimp contracted with F&T Water Solutions to see if electrocoagulation would meet its salt water aquaculture needs.

"Over the last several years, we've been refining our capabilities together," said Peter Letizia, CEO of F&T.

In the electrocoagulation process, he said, the ammonia-containing particles form clumps and these are then removed by filtration. The early shrimp pilot projects showed promise, and the two partner companies have now gone through several harvest rounds, he said. The final test run finished early in 2019.

The results, so far, look very promising. Mortality rates are down significantly, although it will take more data to get a definitive survival ratio. What's known is that the shrimp swim and grow in a healthy manner. They are unstressed despite the high density of crustaceans in the tanks – as much as 810 shrimp per cubic meter in its largest ones.

"You notice stress in shrimp by swimming patterns and cannibalization and things like that. We're not noticing any of that for the first time ever since we've been in the business," Letizia said.

Cooked shrimp for sampling. Photo courtesy of NaturalShrimp.

The technique does require power, but it is on par with other filtration technology, according to Letizia. The exact energy consumption will depend upon the size of the tank, product load, flow rates and other factors.

Looking forward, with R&D almost complete there are plans to expand, said NaturalShrimp's Williams. The company has production facilities near San Antonio on 37 acres of land. Currently the site has sixteen 45,000- to 65,000-gallon tanks, with room to add more as business grows. The enclosed RAS system, which was designed for NaturalShrimp by an engineering firm, is robust and can be duplicated elsewhere.

It could, for instance, be set up in a warehouse in New York or Las Vegas, according to Williams. This means that production can take place near markets, reducing shipping costs, fuel resources and time to get shrimp to consumers. There's not even a need to bring in seawater. In its current facilities NaturalShrimp makes its own saltwater. For electrocoagulation, the water must be salty enough to conduct the electrical charge, and so freshwater will not

The company is looking to expand in other ways. One direction would be to start producing other saltwater species. Both lobster and sea bass are two possibilities, and others could be included, if they are economically viable.

A second expansion direction would be by joint ventures using the technology with other producers; such discussions are under way. NaturalShrimp has exclusive rights worldwide to the technology for shrimp production, with the right to other species shared between NaturalShrimp and F&T.

In discussing the future of this new aquaculture technique, Williams invoked the past.

"It's going to be like mobile phones or computers. This is a disruptive technology," he said.

Follow the Advocate on Twitter @GAA Advocate

Now that you've finished reading the article ...

... we hope you'll consider supporting our mission to document the evolution of the global aquaculture industry and share our vast network of contributors' expansive knowledge every week.

By becoming a Global Seafood Alliance member, you're ensuring that all of the pre-competitive work we do through member benefits, resources and events can continue. Individual membership costs just \$50 a year.

Not a GSA member? Join us.

Support GSA and Become a Member

Author

Hank Hogan

Hank Hogan is a freelance writer based in Reno, Nevada, who covers science and technology. His work has appeared in publications ranging from Boy's Life to New Scientist.

[109,111,99,46,110,97,103,111,104,107,110,97,104,64,107,110,97,104]

Share

- Share via Email
- Share on Twitter
- Share on Facebook
- in Share on LinkedIn

Tagged With

RAS Hank Hogan NaturalShrimp electrocoagulation Shrimp

Related Posts

Innovation & Investment

Competitiveness comes at scale for RAS operations

Total RAS salmon production worldwide is less than half of 1 percent of total production. Many of the investors flocking to the sector now are new to fish farming, and confident in its potential.

Innovation & Investment

Stormborn: The U.S. land-based shrimp farming industry

With farmed shrimp production having largely shifted overseas, RAS technologies offer potential solutions for growing production in the United States. The industry is poised for growth, thanks to entrepreneurs who believe in its potential.

Intelligence

RAS in the USA: Fad or future?

A rash of large-scale, land-based recirculating aquaculture systems (RAS) are planting their flags on U.S. soil, even though it will take several years and hundreds of millions of dollars of investment before they produce their first sellable fish.

Innovation & Investment

High-density shrimp producer wins innovation award

Camanor Produtos Marinhos Ltda. operates a land-based, multi-species concept for sustainable shrimp production called AquaScience. The Global Aquaculture Alliance has named Camanor the winner of its annual Aquaculture Innovation and Leadership award. Director Werner Jost discusses the process.

About The Advocate

The Responsible Seafood Advocate supports the Global Seafood Alliance's (GSA) mission to advance responsible seafood practices through education, advocacy and third-party assurances.

Learn More

Advertising Opportunities

2022 Media & Events Kit

Categories

Aquafeeds > Health & Welfare > From Our Sponsors > Innovation & Investment Innovation & Investment > Intelligence > Responsibility > Fisheries > Artículos en Español >

Don't Miss an Article

Featured

- Health & Welfare An update on vibriosis, the major bacterial disease shrimp farmers face
- Intelligence A seat at the table: Fed By Blue team says aquaculture needs a stronger voice
- Responsibility Quantifying habitat provisioning at macroalgae cultivation locations

Popular Tags

All Tags

Recent

- Fisheries Second Test: Another filler for the fisheries category
- <u>Fisheries Test: This is filler for the fisheries Category</u>
- **Aquafeeds Test Article**
- Responsibility Study: Climate change will shuffle marine ecosystems in unexpected ways as ocean temperature warms
- Health & Welfare Indian shrimp researchers earn a patent for WSSV diagnostic tool

- <u>About</u>
- <u>Membership</u>
- Best Aquaculture Practices (BAP)
- Best Seafood Practices (BSP)
- **GOAL Events**
- **Advocate Magazine**
- Aquademia Podcast
- Blog
- Contact

Stay up to date with GSA

• ©
• f
• X
• in

Copyright © 2024 Global Seafood Alliance All rights reserved. Privacy
Terms of Use
Glossary