Global Seafood Alliance Logo

- GOAL Events
- Advocate Magazine
- Aquademia Podcast
- <u>Blog</u>
- Contact
- 0
- X
- in
- Log In

- About
 - Who We Are
 - Our History
 - o Our Team
 - Sustainable Development Goals
 - Careers
- <u>Membership</u>
 - o <u>Overview</u>
 - Our Members
 - Corporate Membership
- Resources
- Certification
 - Best Aquaculture Practices
 - Best Seafood Practices

Search...

Q

Log In

- About
 - Who We Are
 - o Our History
 - o Our Team
 - Sustainable Development Goals
 - Careers
- Membership
 - o <u>Overview</u>
 - o Our Members
 - Corporate Membership
- Resources
- Certification
 - Best Aquaculture Practices
 - Best Seafood Practices
- GOAL Events
- Advocate Magazine
- Aquademia Podcast
- **Blog**
- Contact

Sexual growth dimorphism in penaeid shrimp

Responsible Seafood Advocate logo

1 August 2002 Dustin R. Moss Oscar L. Hennig Shaun M. Moss, Ph.D.

Mechanism still unclear, physiological causes possible

Female *L. vannamei* (top) are typically larger than their male counterparts (bottom). These shrimp are the same age and came from the same genetic line.

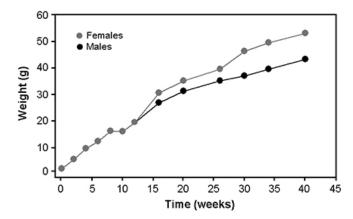


Fig. 1: Sex-specific growth of *L. vannamei* shrimp at the Oceanic Institute.

Sexual growth dimorphism occurs in many cultured aquatic species, including tilapia, catfish, and salmon, and has also been reported for cultured crustaceans. In mixed-sex culture, Macrobrachium spp. males typically grow faster and achieve a larger size than females, whereas the reverse is true for penaeid shrimp. Divergence of sex-specific growth rates for Penaeus monodon of 13 of 28 grams has been reported.

At the Oceanic Institute, the growth of Fenneropenaeus chinensis and Litopenaeus vannamei females diverges from males at approximately 10 grams and 20 grams, respectively (Figs. 1 and 2). Similar size-dependent sexual growth dimorphism has also been reported for P. semisulcatus, P. esculentus and Metapenaeus ensis.

Mechanism unknown

The mechanism by which females achieve a larger size than males is unknown. Sexual growth dimorphism may result from behavioral and/or physiological differences between males and females.

To investigate the role of behavioral factors on the growth of penaeid shrimp, four concurrent experiments were conducted at the Oceanic Institute to study the effects of shrimp gender and size on food handling time in adult *L. vannamei*.

Experimental setup

Three 3-square-meter replicate tanks were stocked at 16 shrimp per tank with either a random selection of males and females, females of large and small sizes, males of large and small sizes, or males and females of similar size. The experiment commenced when four 2.5 X 2.5-cm pieces of squid were introduced into the center of each tank. Total feeding time for each group was calculated.

Size, gender important

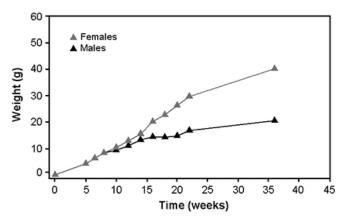


Fig. 2: Sex-specific growth of F. chinensis shrimp at the Oceanic Institute.

The mean feeding time for large shrimp was significantly longer than for small shrimp in both the all-male and all-female experiments (Fig. 3). For the random-selection and similar-size experiments, total feeding time for males was significantly longer than for females. In fact, the feeding time for males was almost four times longer than for females in the similar-size experiment. This was counterintuitive, since females typically grow faster and attain a larger size than males.

Both shrimp size and gender appeared to be important factors in food handling time for *L. vannamei*. Gender appeared to be more important than size, as males outcompeted females for food even when they were smaller than competing females. These results suggested that sexual growth dimorphism in *L. vannamei* is not the result of a greater competitiveness for food (a behavioral advantage) by females.

Similar results have been reported for *P. monodon*, and the causes of sexual growth dimorphism were investigated. As expected, female *P. monodon* grew faster than males, irrespective of whether the shrimp were grown in mixed-sex or monosex cultures. Although not statistically different, females in monosex tanks had higher feed intake rates and better feed-conversion ratios (physiological advantages) than males in monosex tanks.

Growth suppression

In mixed-sex culture, there was no evidence of male growth suppression by females, as the growth of males in both monosex and mixed-sex cultures was similar. However, there was indirect evidence of female growth suppression by males, as females in monosex culture grew 16 percent faster than those in mixed-sex culture. This could be the result of males having a competitive advantage in feed acquisition, as seen in *L. vannamei*.

This phenomenon has also been reported for Nile tilapia (*Oreochromis niloticus*). Typically, male *O. niloticus* grow faster than females in mixed-sex pond cultures. However, in individual rearing conditions with no behavioral interactions, female *O. niloticus* grow faster than males and have better feed-conversion ratios.

This suggests that in mixed-sex pond cultures, behavioral factors nullify the physiological advantage of females. Although there is some evidence to support this phenomenon in penaeid shrimp, more research is needed on the behavioral interactions between males and females.

Incentive for further research

Fig. 3: Feeding times for four experiments with L. vannamei at the Oceanic Institute.

The growth superiority of female penaeid shrimp provides researchers with an incentive to investigate the potential for producing and culturing all-female populations. By removing slower-growing males, it is likely that the use of all-female shrimp could increase production in grow-out systems.

For example, the use of all-female populations could reduce the grow-out period for species that exhibit sexual growth dimorphism at a small size (such as F. chinensis), while allowing a larger harvest size without a major reduction in growth rate for species like L. vannamei that exhibit sexual growth dimorphism at a larger size. In addition to production benefits, monosex populations could provide seedstock and broodstock suppliers with a mechanism to protect their genetically improved germplasm.

Sex reversal

Despite the obvious advantages of monosex populations, little research has been devoted to sex reversal in penaeid shrimp. Selective breeding for skewed sex ratios will likely be ineffective, since heritability estimates for sex ratio in L. vannamei are not significantly different from zero.

Steroid hormones

Although the use of exogenous steroid hormones has proven effective for sex reversal in fish, results with penaeid shrimp have been mixed. Two studies with P. monodon have reported sex ratios skewed toward males and females with the use of methyltestosterone and estradiol, respectively. Trials with methyltestosterone and estradiol at the Oceanic Institute, however, proved ineffective.

Gland surgery

The most successful attempts at sex reversal in crustaceans have involved the implantation or removal of the androgenic gland. Androgenic gland hormone controls sexual differentiation in many crustaceans.

Implantation of androgenic glands into small sexually undifferentiated females has produced males in a number of crustaceans. Furthermore, the removal of androgenic glands in undifferentiated males has produced females. Although effective, these surgical methods are labor-intensive and costly, and further research will be needed before the mass production of monosex shrimp is possible.

Conclusion

The growth superiority of female over male penaeid shrimp is not the result of a competitive advantage in feed acquisition. The mechanism of sexual growth dimorphism in penaeid shrimp is still unclear, and more research is needed to investigate possible physiological causes.

The superior growth of females may warrant the culture of all-female populations for many species. However, efficient sex-reversal mechanisms still need to be developed.

(Editor's Note: This article was originally published in the August 2002 print edition of the Global Aquaculture Advocate.)

Now that you've finished reading the article ...

... we hope you'll consider supporting our mission to document the evolution of the global aquaculture industry and share our vast network of contributors' expansive knowledge every week.

By becoming a Global Seafood Alliance member, you're ensuring that all of the pre-competitive work we do through member benefits, resources and events can continue. Individual membership costs just \$50 a year.

Not a GSA member? Join us.

Support GSA and Become a Member

Authors

Dustin R. Moss

Dustin R. Moss

The Oceanic Institute 41-202 Kalanianaole Highway Waimanalo, Hawaii 96795 USA

[103,114,111,46,101,116,117,116,105,116,115,110,105,99,105,110,97,101,99,111,64,115,115,111,109,100]

Oscar L. Hennig

Oscar L. Hennig

The Oceanic Institute 41-202 Kalanianaole Highway Waimanalo, Hawaii 96795 USA

• Shaun M. Moss, Ph.D.

Shaun M. Moss, Ph.D.

The Oceanic Institute 41-202 Kalanianaole Highway Waimanalo, Hawaii 96795 USA

Share

- Share via Email
- **Share on Twitter**
- **f** Share on Facebook
- in Share on LinkedIn

Tagged With

Shaun M. Moss Oscar L. Hennig dimorphism Shrimp Dustin R. Moss

Related Posts

Health & Welfare

Hybrid tilapia outperform purebreds in seawater study

With interest in culturing tilapia in marine habitats increasing, producers must obtain tilapia capable of growing well in seawater. A study found that both pure-bred and hybrid tilapia performed better in freshwater than in water with high salinity.

Health & Welfare

Potential of genetic selection for shrimp carcass, meat traits

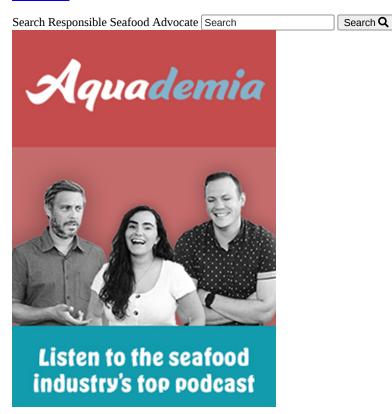
Studies show variability for shrimp carcass and meat quality traits, especially fat quality. Selection for growth may lead to increase in yield.

Health & Welfare

A holistic management approach to EMS

Early Mortality Syndrome has devastated farmed shrimp in Asia and Latin America. With better understanding of the pathogen and the development and improvement of novel strategies, shrimp farmers are now able to better manage the disease.

Health & Welfare


A study of Zoea-2 Syndrome in hatcheries in India, part 3

In this third and final part, authors present recommendations to help reduce the incidence of Zoea-2 Syndrome, which is not caused by any known infectious agents in P. vannamei hatcheries in India.

About The Advocate

The Responsible Seafood Advocate supports the Global Seafood Alliance's (GSA) mission to advance responsible seafood practices through education, advocacy and third-party assurances.

Learn More

Advertising Opportunities

2022 Media & Events Kit

Categories

<u>Aquafeeds</u> <u>Health & Welfare Health & Welfare</u> <u>From Our Sponsors</u> <u>Innovation & Investment</u> <u>Intelligence</u> <u>Responsibility</u> <u>Fisheries</u> <u>Artículos en Español</u>

Don't Miss an Article

Featured

- Health & Welfare An update on vibriosis, the major bacterial disease shrimp farmers face
- Intelligence A seat at the table: Fed By Blue team says aquaculture needs a stronger voice
- Responsibility Quantifying habitat provisioning at macroalgae cultivation locations

Popular Tags

All Tags 🔻

Recent

- Fisheries Second Test: Another filler for the fisheries category
- Fisheries Test: This is filler for the fisheries Category
- Aquafeeds Test Article
- Responsibility Study: Climate change will shuffle marine ecosystems in unexpected ways as ocean temperature warms
- Health & Welfare Indian shrimp researchers earn a patent for WSSV diagnostic tool

- **About**
- <u>Membership</u>
- Resources
- Best Aquaculture Practices (BAP)
- Best Seafood Practices (BSP)
- GOAL Events
- Advocate Magazine
- Aquademia Podcast
- Blog
- Contact

Stay up to date with GSA

- 0

Copyright © 2024 Global Seafood Alliance All rights reserved.

Privacy Terms of Use <u>Glossary</u>