Global Seafood Alliance Logo

- GOAL Events
- Advocate Magazine
- Aquademia Podcast
- Blog
- Contact
- (O)

- Log In

- <u>About</u>
 - Who We Are
 - Our History
 - Our Team
 - Sustainable Development Goals
 - Careers
- <u>Membership</u>
 - Overview
 - Our Members
 - Corporate Membership
- Resources
- Certification
 - Best Aquaculture Practices
 - Best Seafood Practices

Search...

Log In

- About
 - Who We Are
 - Our History
 - o Our Team
 - Sustainable Development Goals
 - Careers
- <u>Membership</u>
 - o <u>Overview</u>
 - Our Members
 - o Corporate Membership
- Resources
- **Certification**
 - Best Aquaculture Practices
 - Best Seafood Practices
- GOAL Events
- Advocate Magazine

- Aquademia Podcast
- Blog
- Contact

Cryptosporidium: Emerging pathogen associated with shellfish

Responsible Seafood Advocate logo 1 March 2007 Daniel Holliman, M.D.

Parasite penetrates, reproduces within intestinal cells

To avoid problems from *C. parvum*, those with immune deficiency should avoid raw and lightly cooked shellfish.

As filter feeders, bivalve shellfish are capable of concentrating microorganisms present in the surrounding water. While most of these microbes are harmless, some pathogenic organisms can occasionally cause human illness and large outbreaks of disease, in some cases.

The best known and most commonly encountered of these pathogens are Vibrio vulnificus, Vibrio parahaemolyticus, Vibrio cholerae, hepatitis A virus, and hepatitis E virus. In addition, an emerging pathogenic organism has now been implicated in shellfish-associated illness: *Cryptosporidium parvum*. Since many shellfish are consumed raw or only partially cooked, the potential for transmission of these pathogens remains.

Cryptosporidium occurrence

Cryptosporidium species are found worldwide in many differing environments, but are especially associated with both fresh- and saltwater sources. As a consequence, they are frequently isolated in shellfish, especially oysters, and outbreaks of illness have occurred as a result of ingestion of contaminated bivalves. *C. parvum* have been discovered in shellfish from the Chesapeake Bay, Gulf of Mexico, and west coast of the United States, and many other marine environments around the globe.

Infections

Cryptosporidium species can infect many different animals, including cattle, goats, sheep, deer, certain birds, mice, and elk. *C. parvum* specifically infects humans and young calves. The protozoan parasite produces illness by penetrating and reproducing within intestinal and other cells. Infected cells are severely altered and can die.

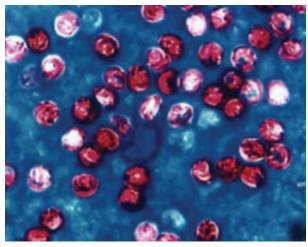
About half the size of human red blood cells, the oocyst stage is the infectious form of *C. parvum*. This small size often allows the pathogen to evade filtration systems. Oocysts also are not eliminated by standard chlorination methods. *C. parvum* sporocysts, which represent a more seedlike or dormant portion of the life cycle, are resistant to most chemical disinfectants. Sporocysts are, however, susceptible to freezing, cooking at temperatures of over 70 degrees-C for two minutes, drying, and ultraviolet light.

Transmission of the organism can occur through ingestion of contaminated water or food, direct contact with infected animals, or person-to-person contact. Outbreaks are relatively common in day-care centers.

Cryptosporidium oocysts shed in the feces of infected people and animals can contaminate water supplies, other animals, and agricultural food sources. The infectious dose of *C. parvum* is quite low – a single cell may be sufficient to initiate disease.

Symptoms

Infection by *C. parvum* typically produces rather severe and watery diarrhea that lasts two to four days and is usually self-limiting. This may be accompanied by a low-grade fever, nausea, weakness, and abdominal cramping.


The young and the elderly seem to have an increased susceptibility to infection and may have more prolonged symptoms. In immunodeficient individuals, especially those with HIV/AIDS, infection can be much more severe, may become chronic, and is sometimes even lethal. Tracheal and lung infections producing severe coughing are common in immunocompromised patients.

Individuals with any form of immune deficiency caused by HIV, cancer, uncontrolled diabetes, or liver disease should totally avoid eating raw or lightly cooked shellfish. However, some people harbor *C. parvum* in their intestinal tracts without exhibiting any symptoms.

Diagnosis

Diagnosis of *C. parvum* infection is made by the observation of oocysts in specially stained stool specimens or affected tissues. Besides keeping the patient from becoming dehydrated, specific treatment is usually not needed. At present, there are no reliable curative therapies available for *C. parvum* infection. Some encouraging results have been obtained with the antibiotic paromomycin, and research is ongoing to develop more effective agents.

Prevention

The tiny size of its infectious oocyst stage allows *C. parvum* to penetrate and reproduce within intestinal and other cells.

As with many illnesses, prevention is the best medicine. Adequate cooking of shellfish will kill the parasite and prevent infection. For those desiring raw or lightly steamed shellfish, the risk of infection will still be present.

Several processing methods directed at eliminating *C. parvum* while maintaining raw characteristics of shellfish have been studied. High hydrostatic pressure processing is partially effective, but does not inactivate 100 percent of the organisms present. E-beam irradiation was found to successfully inactivate all of the *C. parvum* present in oysters in trials conducted at Virginia Tech. However, e-beam irradiation suffers from a lack of consumer confidence in "irradiated" products and is not widely available.

Sewage and animal waste contamination of shellfish-harvesting areas probably represents the most significant contributing factor that results in human cases of shellfish-associated *C. parvum* disease. Improvements in water treatment methods, agricultural containment, and treatment of potentially contaminated material should help in reducing the transmission of *Cryptosporidium* infections, both from water sources and shellfish.

(Editor's Note: This article was originally published in the March/April 2007 print edition of the Global Aquaculture Advocate.)

Now that you've finished reading the article ...

... we hope you'll consider supporting our mission to document the evolution of the global aquaculture industry and share our vast network of contributors' expansive knowledge every week.

By becoming a Global Seafood Alliance member, you're ensuring that all of the pre-competitive work we do through member benefits, resources and events can continue. Individual membership costs just \$50 a year.

Not a GSA member? Join us.

Support GSA and Become a Member

Author

• Daniel Holliman, M.D.

Daniel Holliman, M.D.

Virginia Tech Blacksburg, Virginia 24601 USA

[117,100,101,46,116,118,64,97,109,105,108,108,111,104,100]

Share

- Share via Email
- **У** Share on Twitter
- f Share on Facebook
- in Share on LinkedIn

Tagged With

pathogen infections Cryptosporidium Daniel Holliman

Related Posts

Health & Welfare

A study of Zoea-2 Syndrome in hatcheries in India, part 2

Indian shrimp hatcheries have experienced larval mortality in the zoea-2 stage, with molt deterioration and resulting in heavy mortality. Authors considered biotic and abiotic factors. Part 2 describes results of their study.

Intelligence

As ocean temperatures rise, so too will vibrio outbreaks

A study using a half-century of data has linked climate change and warming sea temperatures with an increase in illnesses from the common vibrio bacteria. Shellfish growers, fighting a particularly virulent strain of Vibrio parahaemolyticus, are changing their harvest protocols.

Intelligence

Byproduct utilization for increased profitability, part 2

Enzymes obtained from fish- and shellfish-processing wastes can be used in the making of a number of useful products. Lipase enzymes from fish can break down lipids, while amylases hydrolyze starch.

Health & Welfare

Field diagnostic tools for pathogenic vibrios

Since Vibrio samples often degrade during transport, the authors analyzed nucleic acids (FTA) cards as a simplified, shelf-stable collection method for the preservation of genetic material from water samples.

About The Advocate

The Responsible Seafood Advocate supports the Global Seafood Alliance's (GSA) mission to advance responsible seafood practices through education, advocacy and third-party assurances.

Learn More

Search Responsible Seafood Advocate | Search Search **Q**

Advertising Opportunities

2022 Media & Events Kit

Categories

Aquafeeds > Health & Welfare > From Our Sponsors > Innovation & Investment > Intelligence Intelligence > Responsibility > Fisheries > Artículos en Español >

Don't Miss an Article

Featured

- Health & Welfare An update on vibriosis, the major bacterial disease shrimp farmers face
- Uncategorized A seat at the table: Fed By Blue team says aquaculture needs a stronger voice

• Responsibility Quantifying habitat provisioning at macroalgae cultivation locations

Popular Tags

All Tags ~

Recent

- Fisheries Second Test: Another filler for the fisheries category
- Fisheries Test: This is filler for the fisheries Category
- Aquafeeds Test Article
- Responsibility Study: Climate change will shuffle marine ecosystems in unexpected ways as ocean temperature warms
- Health & Welfare Indian shrimp researchers earn a patent for WSSV diagnostic tool

- <u>About</u>
- **Membership**
- Resources
- Best Aquaculture Practices (BAP)
- Best Seafood Practices (BSP)
- **GOAL Events**
- Advocate Magazine

- Aquademia Podcast
- Blog
- Contact

Stay up to date with GSA

- 0

Copyright © 2024 Global Seafood Alliance All rights reserved.

<u>Privacy</u> Terms of Use Glossary