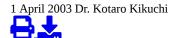
Global Seafood Alliance Logo

- GOAL Events
- Advocate Magazine
- Aquademia Podcast
- <u>Blog</u>
- Contact
- 0
- **f**
- X
- in
- .
- Log In

- About
 - Who We Are
 - Our History
 - o Our Team
 - Sustainable Development Goals
 - o Careers
- Membership
 - o <u>Overview</u>
 - Our Members
 - Corporate Membership
- Resources
- Certification
 - Best Aquaculture Practices
 - Best Seafood Practices

Search...

Q


Log In

- About
 - Who We Are
 - o Our History
 - o Our Team
 - Sustainable Development Goals
 - o <u>Careers</u>
- Membership
 - Overview
 - o Our Members
 - Corporate Membership
- Resources
- Certification
 - Best Aquaculture Practices
 - Best Seafood Practices
- GOAL Events
- Advocate Magazine
- Aquademia Podcast
- Blog
- Contact

Blue mussel extracts stimulate flounder feeding

Responsible Seafood Advocate logo

Free glycine, alanine may play key role in stimulating flounder feeding

Mussels attach to and grow on the surfaces of power plant water intake pipes.

Blue mussels (Mytilus galloprovincialis) are nuisance organisms for electric power plants located along the coast of Japan. Excessive mussel growth on water intake pipes constricts and impedes the inflow of cooling water.

These mussels are generally collected once or twice a year and buried in plant landfills after incineration of the organic matter. However, this removal and disposal is very expensive, and landfill space is scarce in Japan. Several trials on the utilization of collected mussels have been conducted to address the disposal problem, but no effective alternatives, other than as fertilizer, have been developed.

Aquaculture uses

In Japan, blue mussels have been used as a supplemental aquaculture feed for crustaceans such as Kuruma prawns and lobsters, and finfish feed for rainbow trout and red sea bream. The freeze-dried meat of blue mussels can effectively replace fishmeal as a main ingredient in the diet of juvenile Japanese flounders (*Paralichthys olivaceus*). In addition, the dietary inclusion of mussel meat can improve flounder growth by increasing feeding activity.

Water and solvent extracts of fish viscera, bivalves, and worms are known to attract and promote feeding by several fish, including eels, red sea bream, carp, Dover sole and gilthead bream. From previous studies, researchers knew the mussel extracts might contain a feeding stimulant for Japanese flounders, so we extracted the water-soluble fraction of blue mussels and evaluated its potential for inclusion in juvenile flounder diets.

Experimental setup

Live blue mussels were obtained from a fish market and stored at minus-50 degrees-C after removing their shells. Frozen mussel meat was minced, ground into a liquid, and extracted with four times the volume of tap water at 50 degrees-C for 30 minutes, then 90 degrees-C for 30 minutes. The raw extracts were filtered and concentrated by vacuum evaporation at room temperature and stored at minus-50 degrees-C until use. One kg of the extract was made from 3 kg of fresh mussel meats.

Four experimental diets were prepared. The control diet consisted of 80 percent fishmeal, 7 percent pollock liver oil, 7.5 percent potato starch, 2.7 percent mineral mixture, and 2.8 percent vitamin mixture. Five, 10 and 20 percent of the control diet were exchanged with the extract in experimental groups by weight.

Japanese flounders of 10 grams initial body weight from a commercial hatchery were fed the experimental diets twice daily, six days a week, to apparent satiation. They were raised six weeks at 20 degrees-C in closed, recirculating seawater systems.

Results

Blue mussels have been used as a supplemental aquaculture feed for prawns, lobsters, trout, sea bream, and flounders.

The final body weight, weight gain, and feed efficiency of the fish fed the diets containing blue mussel extracts were significantly higher than those of fish fed the control diet. However, these parameters were not different among the experimental groups. A similar trend was shown in protein efficiency, as fish fed the control diet had a significantly lower protein efficiency ratio than the other groups.

Compared to the control diet fish, higher plasma protein and lower triglycerides were found in fish fed the diets with the extract, while other blood constituents were relatively similar for the dietary groups tested. Whole body crude lipid levels, and lipid and protein retention in fish fed the diets with the extract were higher than those in fish fed the control.

Little information was obtained on the effect of feeding stimulants on the feed consumption of the fish in the experiments, and there is little available information on the effects of dietary inclusion levels of stimulants on feeding and growth of fish. Therefore, it is not clear why the feeding and growth of the flounders did not increase with in-

creasing dietary levels of blue mussel extracts. However, upper limits for the effects of dietary inclusion on fish growth have been found for amino acids, vitamin C, phosphorus and omega-3 highly unsaturated fatty acid supplementations.

About half of the 19 dietary free amino acids measured increased with increasing levels of the extract in the test diets of this study, and increases in glycine and alanine were remarkable. Blue mussels are known to attract feeding in Dover sole, where glycine, alanine, and betaine are the amino acids that result in the attracting effect.

Glycine and alanine have also been reported as the most important amino acids in the extract of short-necked clams that strongly attracts eels. Although other amino acids such as taurine, aspartic acid, and histidine also increased considerably with dietary inclusion of the extract in this study, it is plausible that glycine and alanine are the main factors related to increased feeding in Japanese flounders.

Inclusion of crystalline amino acids

The effects of dietary glycine and alanine on the growth and feeding of juvenile Japanese flounders were subsequently examined through a six-week feeding experiment. Appropriate amounts of crystalline glycine and/or alanine were supplemented to the control diet with fishmeal as a main ingredient.

Although inclusion of these amino acids slightly improved the growth of fish, the weight gain and final body weight of the fish were not significantly different among dietary groups tested. The dietary additions of glycine and/or alanine seemed to be less effective in stimulating feeding in flounders than the effect of the mussel extracts. There may be other substances in the extract that stimulate feeding or increase the effect of glycine and alanine as feeding stimulants for Japanese flounders.

Japanese flounders (Paralichthys olivaceus) are some of the most expensive fish in Japan. Commercial sizes run 0.8 to 2 kg.

Conclusion

The effects of feeding stimulants on fish are generally assessed though feeding behavior in omission tests or the amount of consumed feed in feeding experiments. The latter approach is considered a more useful indicator for fish culture, but, few previous trials have shown increased feeding in fish.

This study revealed that a water-soluble fraction of blue mussels improved the growth of juvenile Japanese flounders by increasing feeding. It also showed that free glycine and alanine may play an important role in stimulating flounder feeding.

(Editor's Note: This article was originally published in the April 2003 print edition of the Global Aquaculture Advocate.)

Now that you've finished reading the article ...

... we hope you'll consider supporting our mission to document the evolution of the global aquaculture industry and share our vast network of contributors' expansive knowledge every week.

By becoming a Global Seafood Alliance member, you're ensuring that all of the pre-competitive work we do through member benefits, resources and events can continue. Individual membership costs just \$50 a year.

Not a GSA member? Join us.

Support GSA and Become a Member

Author

Dr. Kotaro Kikuchi

Dr. Kotaro Kikuchi

CS Promotion Office Central Research Institute of Electric Power Industry Chiyoda, Tokyo 100-8126, Japan

[112,106,46,114,111,46,110,101,107,110,101,100,46,105,112,101,105,114,99,64,105,104,99,117,107,105,107]

Share

- Share via Email
- **Y** Share on Twitter
- **f** Share on Facebook
- in Share on LinkedIn

Tagged With

attractants Kotaro Kikuchi Blue mussel Japanese flounder

Related Posts

Aquafeeds

CSIRO studies dry feeds for juvenile spiny lobsters

The Commonwealth Scientific and Industrial Research Organisation has researched pelleted dry feeds are palatable to juvenile tropical spiny lobsters.

Health & Welfare

The efficacy of shrimp soluble extract

Vietnam Organic applied an enzymatic hydrolysis process on shrimp head waste to produce a shrimp soluble extract (SSE) feed attractant that contains a mixture of free amino acids and peptide.

Aquafeeds

White shrimp study compares commercial feed attractants

A recent study in Brazil tested the efficacy of nine commercial feed attractants for Litopenaeus vannamei. Condensed fish-soluble protein, an amino acid complex with digested bivalve mollusk, and whole squid protein hydrolysate stimulated the highest feeding responses.

Health & Welfare

Chemoattraction of low-molecular-weight compounds in shrimp feeds

The methodology used in a Texas Agricultural Experiment Station study provided a useful tool for evaluating the attractiveness of individual ingredients in prepared shrimp feeds.

About The Advocate

The Responsible Seafood Advocate supports the Global Seafood Alliance's (GSA) mission to advance responsible seafood practices through education, advocacy and third-party assurances.

Learn More

Search Responsible Seafood Advocate Search Search Search

Advertising Opportunities

2022 Media & Events Kit

Categories

Artículos en Español > Health & Welfare > From Our Sponsors > Innovation & Investment > Intelligence > Responsibility > Fisheries > Artículos en Español >

Don't Miss an Article

Featured

- Health & Welfare An update on vibriosis, the major bacterial disease shrimp farmers face
- Intelligence A seat at the table: Fed By Blue team says aquaculture needs a stronger voice
- Responsibility Quantifying habitat provisioning at macroalgae cultivation locations

Popular Tags

Recent

- Fisheries Second Test: Another filler for the fisheries category
- Fisheries Test: This is filler for the fisheries Category
- Aquafeeds Test Article
- · Responsibility Study: Climate change will shuffle marine ecosystems in unexpected ways as ocean temperature warms
- Health & Welfare Indian shrimp researchers earn a patent for WSSV diagnostic tool

- **About**
- <u>Membership</u>
- Resources
- Best Aquaculture Practices (BAP)
- Best Seafood Practices (BSP)
- GOAL Events
- Advocate Magazine
- Aquademia Podcast
- Blog
- Contact

Stay up to date with GSA

- 0

Copyright © 2024 Global Seafood Alliance All rights reserved.

Privacy Terms of Use <u>Glossary</u>